Transportation infrastructure systems form part of the economic backbone of the United States. A resilient transportation system is necessary to prepare for and adapt to changing conditions and withstand and recover rapidly from disruptions.

In a recent study [1], linked resilience to the inverse of vulnerability. Also, vulnerability can be viewed as a component of resilience, or resilience as a function of vulnerability among other factors [2].

Dimensions:
- **Technical:** Physical systems and its interconnected components to be serviceable when subjected to extreme events.
- **Organizational:** Refers to the capacity of agencies/organizations to respond to emergencies and carry out critical functions.
- **Social:** Ability to reduce harm or suffer to communities and government jurisdictions, caused by the loss of critical services after an event.
- **Economic:** The ability to reduce both direct and indirect costs caused by events.

Fundamentals:
- **Robustness/Fault tolerant:** Restrain damage to transportation asset and provide a capacity to withstand or overcome a given level of stress.
- **Redundancy:** The ability of elements and the entire structural transportation system to be substitutable or hold a backup system capable of satisfying the systems functionality in the event of disruptions.
- **Resourcefulness/Adaptable:** The state at which the system adapts to crises, based on diagnostic and damage awareness technologies.
- **Response & Recovery:** The ability to mobilize quickly to regain normality after a crisis or event, and learn after the events.

Motivation & Objectives:
- Transportation infrastructure systems form part of the economic backbone of the United States.
- Transportation infrastructure resilience must be taken in consideration due to the frequent occurrence of extreme hydrometeorological events.
- Comprehend transportation infrastructure resiliency, and its portraying factors.
- Develop a conceptual framework to aid future research to identify, measure and mitigate critical infrastructure in transportation systems.

Conclusions:
- The developed framework can be applied to many structural systems in transportation infrastructure.
- Future research is needed to identify other indicators in targeted assets.
- Framework needs to be updated to account the organizational, social and economic aspects of resiliency.

Acknowledgement:
I would like to thank DHS for providing me this research opportunity. Special thanks to UIUC personnel for their constant attention, time and many other contributions in accomplishing the project. Finally, my sincere appreciation to Dr. Tandon for his guidance throughout the project.

References: