Measuring Illinois Pavement’s Performance in Response to Hydrometeorological Changes

Angel A. Rodarte, Dr. Vivek Tandon

Introduction
Due to the hydrometeorological changes in the globe, the performance of transportation infrastructure has been abridged. The increase in high temperatures and precipitation are plummeting the performance of the roads. To mitigate the influence, it is essential that new pavement designs be resilient to the hydrometeorological events. Resilient infrastructures minimize the cost of repair and maintenance of transportation infrastructure assets.

Background
Flexible pavements are composed of asphalt concrete (AC) layer(s) above a base, sub-base, and a subgrade layer. Flexible pavements are able to efficiently transfer the wheel loads to the layers below (Figure 1), however, the performance of the pavements degrades due to continuous exposure to traffic and environmental exposures [1]. The pavement condition is assessed by evaluating the ride quality that is represented by the International Roughness Index (IRI). An IRI of 100 in./mile is considered the roughest and with 175 in./mile the pavement needs to be rehabilitated [2]. Typically, maintenance is required when IRI reaches 100 in./mile.

Procedure
- The pavement data and the traffic data were obtained from Illinois DOT website.
- The climate data was simulated by models from North American Regional Climate Change Assessment Program (NARCCAP).
- Obtaining all three requirements, the pavement performance was predicted using the Mechanistic-Empirical Pavement Design Software.

Conclusion
As the results prove, hydrometeorological changes are degrading the quality of Illinois pavements causing earlier maintenance than expected. Anticipating and adopting especially for critical infrastructure will reduce carbon footprint and enhance efficiency.

Acknowledgments
I would like to thank the Department of Homeland Security for this Summer Research opportunity. My special thanks to all the personnel form UIUC Coordinated Science Lab that aided on our stay to have a pleasant experience. My thanks to Dr. Tandon for his guidance that helped me accomplish this project. Lastly, I wish to acknowledge the help provided by Dr. Megha Sharma who helped me in achieving the objectives of this research.

References

ciri.illinois.edu